Tutorial

Table of contents

@Y VT 2
2 MOdEliNG @ DIDL SIIUCIUIE.........ceiuieieeieeieeie ettt sae e e e s 2
3Modeling aDIDL CONENt TYPE.....cccveeiuieiieeiieetee sttt re et sre s et e s e sseesneesreesnnes 3
4 Creating YOUI FIrSt DIDL......ocuecciicie ettt sttt e eesne e sneennean 3
31 YO0 0 1= | RSP UU PRSPPI 4
B MYCONMENTSENTAIIZEN ... bbbt 5
7 MYCONMENTDESETAIIZEN ..ottt 6
8 MYSIMPIECOMPONENL.......coiteeieiieetieie ettt e e e te e e sreesee s e e sseeseeneeseeenes 7
I MYSIMPIEDIAL...... e e e anns 10

10 MYSIMPIEDIAITESL......eeeeceiee ettt e sreeneennens 14

Tutorial

1. Overview

DIDLToolsisaJavatoolkit for the construction, validation, serialization and de-serialization
for MPEG-21 DIDL datamodel. Thistutorial existsto help newcomers quickly understand
the abilities of the DID-API and existing implmentations. The tutorial should provide basic
working knowledge of the DIDLTools and the DIDL structure it supports. A sample
application will be created to illustrate the various elements necessary to create aDID.

2. Modelinga DIDL Structure

Before we start coding we need to define the structure of our digital objects according to the
DIDL specification. Each DID is comprised of a number of key elements, these elements
include:

» Resource- A resourceis an individually identifiable asset such as avideo or audio clip,
an image, or atextual asset. A resource may also potentially be a physical object. All
resources must be locatable via an unambiguous address using By-Reference or stored
By-Value.

« Component - A component is the binding of aresource to all of its relevant descriptors.
These descriptors are bits of information related to al or part of the specific resource
instance. Component descriptors will typically contain control or structural information
about the resource (such as bit rate, character set, start points or encryption information)
but generally not information describing the "content” within.

» Descriptor - A descriptor associates information with the enclosing element. This
information may be a component (such as athumbnail of an image) or a portion of text.

« Statement - A statement is aliteral textual value that contains information but not an
asset. Examples of likely statements include descriptive, control, revision tracking, or
identifying information.

e Item - Anitemisagrouping of sub-items or components that are bound to relevant
descriptors. Items may contain choices, which allow them to be customized or
configured. Items themselves may be conditional. If an item contains no sub-items, then
it can be called an entity. If it contains sub-items, then it can be called a compilation.

For our first example, lets say we have aMARC-XML document which we'd like to package
asaDID. Our MARC-XML document hasadoi (i.e.
info:doi/xx.xxxx/].dyepig.2004.06.022") which we'll use for our content identifier. For our
digital object, we'll generate a UUID and prefix thisidentifier with alocal info URI (i.e.
info:lanl-repo/i/dd7b17ea-bddf-11d9-9de5-c11b6cd8559). Our first DID will be composed
for the following:

e Resource-> MARC-XML Document stored asinline XML, know as referenced

Page 2

http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikipedia.org/wiki/UUID
http://info-uri.info/

Tutorial

"By-Value".

« Component -> Encapsul ates Resource and its Descriptor, which defines elements such
as copyright and usage.

» Descriptor -> Enclosed Statement contains Content Type defining adminstrative
metadata for digital object. In this use case, we will create a new content type, see
"Modeling DIDL Content Type" below for additional information.

» Item -> Encapsulates all resources and metadata pertaining to this digital object.

Figure 1

The DIDL Specification and DID-API support complexity far beyond the model defined
above. Starting with asimple model allows usto explore the key elements without any
unnecessary complexity. For those who wish to jump ahead, look into the MyComplexDidl
implementation provided with DIDExamples distribution.

3. Modelinga DIDL Content Type

Each Descriptor contains a child element named Statement. The Statement is an open-ended
XML Schema element allowing data from any namespace. In order to properly support the
DIDL schema's flexibility, the DID-API provides an interface to support the construction,
serialization, and de-serialization of virtually any metadata structure. These metadata
structures are referred to as Content Types within the the DID-API. For each content type we
need to define a base class, a serializer implementation, and a de-serializer implementation.
For thistutorial, we'll create a simple content type containing the following attributes:

id -> A unique identifier of the parent for which the content type represents.
resour ceURI -> A resolvable resource uri for aresource.

copyright -> A brief note indicating copyright ownership.

usage -> A brief note indicating usage restrictions.

The XML serialized MyContent object will be of the form
<xs:schema xm ns: xs="htt p://www. w3. or g/ 2001/ XM_Schema" >
<xs: el enent nane="resource" type="xs:string"/>
<xs: el enent nanme="copyright" type="xs:string"/>
<xs: el enent nane="usage" type="xs:string"/>
<xs:attribute name="id" type="xs:ID'/>
</ xs: schema>

4. Creating your first DIDL
Note: Source code for thistutorial is available within the DIDExamples distribution.

To implement the DIDL model we've structured above, we need to create the following

Page 3

Tutorial

classes:

MyContent - MyContent Content Type Object

MyContentSerializer - Generates XML String from MyContent object
MyContentDeserializer - Produces MyContent object from MyContent XML fragment
MySimpleComponent - Defines the structure of our Component

MySimpleDidl - Defines the structure of our DIDL

MySimpleDidI Test - Test Harness

5. MyContent

First we need to model our content type object. To do thiswell create a class named
MyContent. Each content type requires three components; a data object, a serializer, and a
deserializer. This classis an example of the data object. The serializer and deseriadizers are
located in the org.foo.didl.serialize package, named MyContentSerializer and
MyContentDeserializer, respectively. The three components may also be implemented as a
single class.

Implementing the model we defined above will produce a class similar to the following:

Page 4

Tutorial

In addition to the object fields we also added a couple constants to define the XML
namespace.

6. MyContentSerializer

Next, we need to define how an instance of our content type should be serialized. To do this,
welll create a class named MyContentSerializer. This class will need to implement the

DIDL SeridizerType interface which is called during the DIDL creation process. During
DIDL Serialization a content type registry is checked for aimplementation for the current
object. Provided there's a match, the DIDL seriaization interface will delegate to the
implementing class. MyContentSerializer is an example of an implementing class. In
MySimpleDidl we'll register this implementation in getXML(). In the more complex tutorial,
MyComplexDidl, we call MySerializationFactory and ask it to return a DIDL SerializerType
containing the registered content type implementations.

There are anumber of waysin which we can serialize our object to XML, but for this
example we'll just pull out the information we need and write the xml form to a PrintWriter.

Page 5

Tutorial

The write() method will be invoked when a higher level request for serialization is made. The
registry will tell the application it should use thisimplmentation for the MyContent content
type and the resulting data will be written to the output stream.

7. MyContentDeserializer

Now that we've defined our content type's serialization form we can implement our
de-serializer. Next, we'll create a new class, named MyContentDeserializer, to demonstrate
how XML serialized content can be deserialized. The class implements the

DIDL DeseriaizerType interface which is called during the DIDL parsing process.

For this example, we'll do the following:

Read InputStream to extract XML Content as a String
Initialize our X PathProcessor

Set MyContent fields using X Path queries

Return MyContent object

1.
2.
3.
4.

Page 6

Tutorial

Thus far, we've defined our content type, MyContent, how it can be written as XML and how
to parse the XML to create a MyContent object. Next we need to define the structure of our
component.

8. MySimpleComponent

DIDL Componetswrap up al the information about a resource into a clean package. A
Component can contain any number of Descriptor elements. Descriptor elements are
essentially wrappers for our content type information. A DIDL Component may all contain
any number of Resource elements, provided they all relate to the same resource. In
MySimpleComponent we'll define asimple didl component implementation. The create() and
parse() will be used to construct and deconstruct the component.

Page 7

Tutorial

For this example, we'll do the following:

1. Definefields and associated getter/setters for transitory information.

2. Define create() method implementing previously defined Component structure.
3. Define parse() method to deconstruct our Component structure.

Page 8
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

Page 9
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

Now that we've defined our Component, we can take the next step and define our DIDL
structure.

9. MySimpleDidl

Next we'll wrap up our content types and components into DIDL Items and implement the
DIDL structure we previously defined.

Page 10
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

For this example, we'll do the following:

Define fields and associated getter/setters for transitory information.
Define create() method implementing previously defined DIDL structure.
Define parse() method to deconstruct our DIDL structure.

Define method to get XML serialization of our DIDL object

PowbdpE

Page 11

Tutorial

Page 12
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

Page 13
Copyright © 2006 LANL Research Library All rights reserved.

Tutorial

10. MySimpleDidITest
MySimpleDidI Test provides atest harness for MySimpleDidl.

Page 14

	1 Overview
	2 Modeling a DIDL Structure
	3 Modeling a DIDL Content Type
	4 Creating your first DIDL
	5 MyContent
	6 MyContentSerializer
	7 MyContentDeserializer
	8 MySimpleComponent
	9 MySimpleDidl
	10 MySimpleDidlTest

